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Non-perturbative solution of a quantum mechanical oscillator 
interacting with a specific environment? 
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Institut fur Theoretische Physik der Justus-Liebig-Universitat Giessen, West Germany 

Received 15 June 1983 

Abstract. A quantum mechanical model of an oscillator interacting linearly with an 
environment is treated by the method of perturbation series expansion. For a special class 
of environments and interactions, this series is summed up to all orders. An integral 
equation for the time dependence of the coordinate operator of the oscillator is obtained, 
which is solved analytically by the method of Laplace transformations. General conditions 
are stated for a dissipative behaviour of the special class of environments considered. An 
example, which is widely applicable, is discussed. 

1. Introduction 

The quantum mechanical problem of an oscillator interacting with an environment 
has obtained much attention in literature. A recent review of the status of the field 
has been given by Dekker (1981). One method to attack the problem is to derive 
quantum mechanical Langevin equations of motion for the oscillator coordinate and 
momentum in the Heisenberg picture by stating explicitly the interaction with the 
environment. Models which have been solved exactly consist of an oscillator-type 
(boson-type) environment and an interaction that is linear in the coordinates and 
momenta of the system oscillator and the environment (see e.g. Schwabl and Thirring 
1964, Ford et a1 1965, and more recently Arai 1981, Maassen 1982, Alicki 1982). 

In several studies the dissipative nature of the environment is treated in perturbation 
theory up to second order only (e.g. Senitzky 1960, Hasse 1979). In this paper we 
show that under certain specific conditions for the environment and the interaction 
the perturbation series can be summed up to all orders, and then Langevin-type 
equations of motion for the oscillator coordinate are obtained. It will be shown that 
the condition for the summability of the perturbation series defines a class of environ- 
ments and interactions which comprehend the cases of exactly solvable models men- 
tioned above. 

The paper is organised as follows. In 9 9  2 and 3 we introduce the model and 
calculate the time development of the oscillator coordinate by the perturbation 
expansion method, respectively. In § 4 we state the condition for the summability of 
the perturbation series. The integral equation for the oscillator coordinate and its 
solution are discussed in §§ 5-9, especially for the weak damping case (0 7) and in the 
framework of the short time interaction approach (§ 8). Our conclusions are given in 
§ 10. 
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2. The model 

We consider an oscillator interacting with an environment. The Hamiltonian assumed 
is of the form (Schrodinger picture) 

H = Hn + A W, (1) 

w = Q ' V ( p ,  x). (4) 

Here, Ho is the unperturbed Hamiltonian consisting of the system oscillator and the 
environment Hamiltonians. The coordinate and momentum of the oscillator are 
denoted by Q and P, respectively, with [ 0, PI = ih. The set of coordinates and momenta 
of the environment is denoted by (x, p ) .  The interaction operator W is multiplied by 
a dimensionless perturbation parameter A and is assumed linear in Q. In the Heisenberg 
picture the time development of the nth power of the operator Q is given by 

Q " ( t )  = exp(iHt/h)Q" exp(-iHt/h). ( 5 )  

Since one is usually interested in the time dependence of the mean value (0) and the 
variance (0') - (Q)' under the influence of an environment, we study in the following 
the evaluation of equation ( 5 )  under certain stringent conditions for the environment, 
where an analytical expression for Q( t )  and Q'(t) can be obtained. 

3. Perturbation expansion of the coordinate Q( t )  

The time-development operator in the intermediate representation 

U ( t )  = exp(iHot/R) exp(-iHt/h) (6) 

U ( t )  = 1 - - A  @(t ' )U( t ' )  dt' (7) 

@ ( t )  = exp(iH,,t/h) W exp(-iHot/h) = d(t)  p(t)  

fulfils the integral equation (Messiah 1961) 

I,: 
where 

(8) 
with 

d( t )  =exp(iH,r/h)Qexp(-iH,t/h)= Q c o s R t + ( P / M R )  sinRt (9) 

(10) p(t)  = exp(iH,t/h) V exp(-iHot/h). 

Solving equation (7) iteratively we obtain the perturbation expansion 

W ( T ]  . . . T,,) dTn 
n = l  

where 
* - 

d r "  =dT, . . . d7, W (  71 . . . 7,) = w( 71) . . . w( T,,) .  (12) 
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This result is inserted into 

Q ( t )  = U + ( t ) d ( t ) U ( t ) ,  

where U + ( t )  is the Hermitian con.jugate operator of U ( t ) .  Then we get 

335 

(13) 

where QLol = d(t) and for the nth order of perturbation 

+(-I)"  d e n d ( t ) w ( e , .  . . e,,)) 

t > 71 > . . , > Tn-m > 0, 

5 
with the following conditions on the integration variables: 

t > el > . . . > e, > 0. 

For n 3 2 we can reorder the operators and integration boundaries in (15) and get 
after some simple steps: 

n = 2 :  

QLzl= ( i A / f i ) '  I dT2[[d(t), ~ ( T ~ ) ] ,  *(72)1 

n 2 3 :  

+ ni3 (-I), I d.r"-, de" W(T,_, . . . T ~ )  
m = l  

4. Condition of summability of the perturbation series and the choice of the 
environment and the interaction 

In order to proceed further with the perturbation expansion of the oscillator coordinate 
given by equations (14) and (17), we introduce in (18) the following condition for 
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the commutator: 

where f is an odd c-number function of its argument and independent of the momenta 
and coordinates of the environment. Insertion of equation (19) into (18) makes (17) 
a recurrence relation. Before we do this in 0 5 ,  in the following we show that the 
requirement (19) actually defines a special class of Hamiltonians He,,(p, x) and interac- 
tions V ( p ,  x)  of the environment. 

Taking T~ = t, T~ = 0 in (19) and making a Taylor series expansion of the time- 
development operator, we can rewrite equation (19) as follows: 

m 
n odd 

The last relation can only be fulfilled if the sum over m yields a constant number, say 
c,, independent of time ( n  = 1 , 3 , 5 .  . .): 

Equations (21) determine the class of possible forms of He,, and V. Let us assume 
that V depends only on the coordinates of the intrinsic degrees of freedom and that 
He,, consists of the kinetic energy T, quadratic in the momenta, and a potential energy 

( x = x * ,  . . . , X N ) :  

N i  

Then the only possible forms of V and U,,,, which fulfil equations (21), are the 
following: 

N 
v = 1 u,x, + v, 

1 = 1  

where vi, V,,, b,, di and U,, are constants. 
Equations (23) and (24) together with (22) describe an environment consisting of 

N harmonic oscillators which couple linearly to the first considered oscillator described 
by H,,,. A more general class of couplings and environments can be generated by 
carrying out canonical transformations of the intrinsic coordinates, which leave the 
commutator (19) unchanged. 

For illustration, let us assume that He,,, given by (22) and (24), is transformed to 
the following form: 

and 
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Then the commutator (19) can be easily calculated. We get the simple expression: 

Here we want to stress that the formulae derived in the following sections are justified 
only for couplings and environments obeying equation (19). 

5. Integral equations for Q(t )  

When we insert (19) into (18) and then (18) into (17) and compare the resulting 
expression with (15), we obtain a recurrence relation connecting Q["] with Q[n-21. We 
sum up the recurrence relations for n even and n odd, separately, 

Q3 

Qeven( t )  = Qf2"]( t ) ,  Qodd( t )  = Q[zni-ll ( t ) ,  
n =O n =o 

which result in the following two integral equations: 

From these equations it is interesting to observe that Q"'" is acting in the space of 
the oscillator and Qodd in the space of the environment only. Adding up equations 
(29) and (30) we obtain the integral equation for Q(t) .  

We note that inserting Q( t )  into the equation of motion 

d2Q( t ) /dt2+R2Q(t)  = - ( h / M )  V ( t ) ,  

V ( t )  = exp(iHt/R) V exp(-iHt/h), 

(31) 

where 

(32) 
gives us another interesting integral equation connecting V ( t )  with Q( t ) :  

V ( t ) =  Q( t ) - -  h" lor f(t-T)Q(T)dT. (33) 

Equations (31) and (33) yield the following integro-differential equation for Q( t ) :  

d2 A 
dt  M 

+ R2 Q( t )  = - - ?( t )  + 

6. General solution for Q( I )  

(34) 

Equations (29) and (30) or, equivalently, equation (34) can be solved with the method 
of Laplace transformations. The Laplace transform is defined for a time-dependent 
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function q ( t )  as (Bronstein and Semendjajew 1967) 

Lq(s )  = lop exp(-st)q(t) dt (35) 

with Re  (s) > 0. 
For the Laplace transform of Q(t)  we find from equation (34): 

LQ(s)  = [s2+C12- (ih'/Mh)Lf(s)]-'[P/M + 0 s -  ( A / M ) L ? ( s ) ] .  (36) 
Then transforming back to Q( f )  we obtain the general solution: 

P 
M Q( t )  = A ( t )  - + B( t )  0 - A ( t - 7) ?( 7) d7, (37) 

where P = P( t = 0) and Q = Q( t = 0) are the operators of the momentum and coordin- 
ate of the system oscillator at time t = O .  At t = O  these operators coincide in the 
Heisenberg and Schrodinger pictures according to the definition ( 5 ) .  The Laplace 
transforms of A(t) and B ( t )  are given by 

LA( s) = [ s 2  + Cl2 - (ih '/Mh)Lf( s)]-' (38) 

LB(s)  = sLA(s) .  (39) 
In order that the environment acts dissipatively on the system oscillator we require 
that Q( t )  approaches the inhomogeneous solution of (34) for large times: 

lim Q(t)=-- A(t-T)C(r)dT.  (40) 
f-roc A lo' 

This condition is in general fulfilled if LA( s) is a meromorphic function in the complex 
s plane with poles at s = s l ,  s 2 .  . . and Re (si) < 0, and is determined by the specific 
form of Lf(s). For the oscillator-type environment, given by (25) and (26), we obtain 
for Lf(s), using (27): 

a2 1 
~ f ( s )  = -ih 1 2 2. 

i = l  mi s + w i  

Then the Laplace transformed function 

has poles in the complex s plane for s2 = x, 

(42) 

( j =  1 , .  . . , N +  l ) ,  where the xi are positive 
and negative real numbers. Since all poles, except possibly two, have real parts 
Re (si) = 0, the considered environment does not behave dissipatively. 

A dissipative oscillator-type environment is obtained if we assume a continuous 
frequency spectrum. Setting the density of eigenmodes p ( w )  and the frequency- 
dependent coupling constant a ( w )  and mass m ( w )  we can write: 

r +x 



Oscillator interacting with spec$c environment 339 

Here, we have assumed p ( w ) ,  a ( w )  and m ( w )  as even functionsjn 0. Therefore the 
Fourier transformed-function { ( U )  is an odd function, f ( w )  = - f ( - w ) ,  in w .  Further 
let us assume that f ( w )  is a meromorphic function in the complex w plane with no 
poles at the real w atis and a zero at infinity. Then the function f ( t )  is defined for 
t > 0 by the poles of f ( w )  in the upper half of the complex w plane: 

Here (Yk +iPk with P k  > 0 denote the positions of the poles in the upper half of the 
complex w plane. Depending on the maximum value of the times the function 
f ( t )  acts only up to times of the order t -max(l /Pk) .  For much larger times the 
function f(t) is negligibly small-a property to be used in connection with the short 
time interaction approximation (§ 8). The corresponding Laplace transform (45) is 
then obtained as 

Therefore, Lf(s) is a meromorphic function in the complex s plane with poles at 
s = -& + i(Yk. 

As an example we take the following model ( P  > 0, f a >  0 ) :  

fw = - ( f o w / n ) / b 2 + P 2 ) .  

This yields for f(t) and Lf(s): 

t > O  f (  t )  = -ifo e-@ (49) 

(50)  Lf( s) = -ifo/(s + PI. 

LA( S) =[s2 + 112 - ( A 2 f o / M h ) (  s + @)-'I-'. 
Then the Laplace transform (38) of the model becomes 

(51) 

This function has three poles of first order in the complex s plane. The coordinates 
of these three poles have Re ( s i )  < 0 if the condition R2p > A 'f,/Mh is fulfilled. Under 
this condition the environment behaves dissipatively. 

7. Weak damping 

For the following we assume that the damping of the system oscillator due to the 
environment is weak. In that case the function LA(s) has two poles of first order in 
the vicinity of s = *iR, besides the possible other poles with Re ( s i )  << 0. The poles in 
the vicinity of s = i i R  are responsible for the long time behaviour of A(?)  and B( t ) ,  
since they yield the smallest decay times. Using the parameter A as perturbation 
parameter, the positions of these poles in the complex s plane are obtained up to 
terms in A': 

SI = r (R) ,  s2 = r(-R), ( 5 2 )  

r (R)  = iR + (A2/2Mflh)Lf(iR). 

where 

(53) 
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With the definition of the Laplace and Fourier transforms of f ( t )  we get: 

Lf(*iR) = (1/2i)(y(R)+ig(R)) (54) 

where y(R) and g(R) are real functions defined by 

y(R) = 2i lo' cos Rt f ( t )  dt  

g(R) = 2i lom sin Rtf (  t )  dt  = -2rf(R). 

Inserting (54) and (56) into (52) we obtain finally: 

r ( * ~ )  = *id - i. (57) 

where 

d =a- ( A2/4Mnh)y(n)  ( 5 8 )  

(59) 
- r = - ( A 2  7r/2MRh)f( R). 

The frequency shift A f l  = d - R can be positive or negative, whereas the decay width 
is always positive because f(R) is negative for R > 0 (see equation (44)). In the 

model, where f (  t )  is given by (49), the frequency shift and the decay width are calculated 
as: 

Assuming that the two poles of L A ( s )  at s, and s2 (equation ( 5 2 ) )  determine the long 
time behaviour of A( t )  and E (  t )  we obtain for these functions (Re( si) << - f for i > 2): 

A(t )  = (l/d) sin f i t  e-Ff (61) 

(62) 

From these functions it follows that in the approximation of weak damping (i.e. equation 
(53) is correct only up to terms in A'), the long time behaviour of Q ( t )  is described 
by the differential equation for a damped oscillator with an external driving force: 

B ( t )  = (cos dt- (i./fi) sin dt) e-". 

It is clear that the position of the poles near *iR can be calculated from (38) 
without any restrictions on A. In that case the two poles do not lie, in general, 
symmetrically with respect to the real s axis as in the approximation (57), and then 
the expressions for A ( t )  and B ( t )  are slightly more complex as compared with that 
given by equations (61) and (62). 

8. The short time interackm approximation 

The function f ( t )  acts as the response function of the environment. As stated above, 
it acts only up to times of the order t -max( l /Pk)  (see equation (46)). This fact can 
be used for an approximation of the integrals in (29) and (30) for times t >> max( l / P k  1. 
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First we transform the integrals in (29) and (30) to new variables of integration 
( T = T 2 ,  e = 7 1 - ~ 2 ) :  

lor dTi 1; d72 Sin n(t- T ~ ) ~ ( T ~  - 7 2 )  a(72) 

Next we introduce the following approximation for t - T >> max(l/&), which in the 
literature is known as the short time interaction approach (see Senitzky 1960): 

2i [ o f - T  d e  sin R( t - T - e)f( e )  

+ 2i lom dB sin R(t  - 7 -  O)f(e) 

= y(  R) sin R(  t - T )  - g(R) cos ( t - 7).  

Here y(R) and g(R) have already been defined in equations ( 5 5 )  and (56), respectively. 
Inserting the approximative expression (65) into (64) and then back into (29) and 
(30), we obtain the following simplified integral equation for Q( t )  in the short time 
interaction approximation: 

With the method of Laplace transformation the time-dependent solution is again easily 
calculated: 

P 
M 

Q( t )  = A’( t )  -+ B’( t)Q A’(t  - T )  p( T )  dT (67) 

where P and Q are defined as in equation (371, and 

LA‘( S) = [s2 + R2 + ( A2/2MCIh)(g(R)s - y(R)R)]-’ (68) 

LB’( s) = sLA’( s). (69) 

The LA’( s)  has two poles of first order, given up to terms in A’ exactly by the expression 
(57): - -  

s1,2 = *il l -  r, (70) 

with fi and f defined by ( 5 8 )  and (59). Hence the functions A’( t )  and B’(t)  have the 
same time behaviour as A ( t )  and B ( t ) ,  studied in 0 7 for the case of weak damping 
and large times. Therefore, the short interaction time approach and the weak damping 
approximation yield the same results in the framework of our model (up to terms of 
A 2  in sI and s 2 ) .  
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9. The mean value of Q( t )  and Q2( t )  at large times 

In fact ,  we are interested in the mean values of the operators a(?) and Q 2 ( t )  over 
the environment in connection with e.g. charge and mass transfer during nuclear heavy 
ion reactions (Gupta et a1 1983). The  environment can be considered to  be described 
by either (i) a pure quantum state, say In), o r  (ii) a density matrix. In particular, if 
the environment is represented by a canonical ensemble at  temperature T, the density 
matrix is given by 

with 

Here  In) and E, are  the eigenstates and eigenvalues, respectively, of the environment 
Hamiltonian Hen>. A t  large times the mean value of Q( t )  with respect t o  the environ- 
ment, where Q ( t )  is given by (40), vanishes for the environment and interaction given 
by (25) and (26), respectively. For the  calculation of the mean value of Q 2 ( t )  at large 
times we take the square of equation (40): 

The anticommutator appearing in (73) can be evaluated by taking the expectation 
value with respect to the environment. The environment is assumed to be described 
with oscillators distributed with a density p ( w )  over the frequencies w .  For an  easy 
calculation of the expectation value of the anticommutator in (73),  we first take an  
environment consisting of oscillators with a discrete frequency spectrum and finally 
make the transition to the continuous spectrum. Therefore the environment is first 
described by the Hamiltonian (25) and initially represented by a canonical ensemble 
at temperature T (see (71) and (72)) and the interaction V between environment and 
oscillator is given by (26). We  then obtain: 

Inserting this result back into (73) we carry out the time integrations by using the 
Laplace transformation of A(? ) .  Then we replace the discrete frequencies of the 
oscillator environment by the continuous spectrum and make use of the Fourier 
transformed function of f(t) (see equation (44)). This results finally in 

= --(-) l A 2 * r  f ( w )  coth(&)LA(iw)LA(-iw) dw, (75 )  
1 - ~ c  2 M 

where LA(s )  is defined in (38). This expression can be evaluated further only if f ( w )  
and LA(s) are explicitly given. In the weak damping limit or,  equivalently, in the 
short interaction time approach, we can use A ( t )  in the form given by (61). This 
yields the  expression 

1 h 2 + m  
(QZ)env 1-cc = --(-) 2 M f ( w )  ~ o t h ( & ) ( ( w ~ - ~ ~ - ~ ~ ) ~ + 4 w ~ ~ ~ ) - ~  dw. (76) 
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In the limit of very weak coupling ( A  -0) one obtains the well known result 

10. Conclusions 

We have shown that the perturbation series can be summed up to all orders if the 
commutator (19) is a c-number function of time. The response of the environment 
on the oscillator is then completely described by this function, and this function 
determines a certain class of environments of exactly solvable models. For practical 
applications the most important environment belonging to this class is the one described 
by oscillators coupled linearly with the original system oscillator (Haken 1970, Dekker 
1981). 

A discussion on the poles of the Laplace transformed L A ( $ ) ,  given by equation 
(38) ,  led to conditions for dissipative effects of the environment. We found that, for 
the homogeneous solution of Cl( t )  approaching zero for large times, LA( s) should 
have poles at the left half of the complex s plane only. Under this condition an 
approximative equation (63) of a damped oscillator is obtained. It is straightforward 
to calculate variances and correlation functions for the oscillator in the framework of 
the theory presented here. The results are naturally the same as for the known exactly 
solvable models, since the class of environments considered in this paper comprehend 
all known cases given in literature (see e.g. Dekker 1981). 
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